Subscribe eNewsletter Subscribe for five free issues
Twitter Linked In

Lightweight steel production breakthrough

July 2017

High-strength, lightweight steels can finally be processed on an industrial scale, thanks to a breakthrough in controlling undesired brittle stages from production by WMG, University of Warwick (UK). Dr. Alireza Rahnama has developed a new processing route which allows low density, steel-based alloys to be produced with maximum strength, whilst remaining durable and flexible– something which has been largely impossible until now.

Two lightweight steels were tested - Fe-15Mn-10Al-0.8C-5Ni and Fe-15Mn-10Al-0.8C – for their potential to achieve maximum strength and ductility. During production, two brittle phases can occur in these steels: kappa-carbide (k-carbide) and B2 intermetallic which make the steels hard but limits their ductility, so that they are difficult to roll.

Through simulation and then experimentation, the WMG researchers found that at certain high annealing temperatures, these brittle phases can become much more controllable, allowing the steels to retain their ductility. Between 900°C to 1200°C, the k-carbide phase can be removed from production, and the B2 intermetallic brittle phase can become manageable – forming in a disk-like, nano-sized morphology, as opposed to a coarser product which forms at lower temperatures.

Current processes for strengthening lightweight steels make them less flexible – and therefore less marketable - but this could now be a problem of the past. The breakthrough, said the university, could lead to a revolution in safer, greener, more fuel-efficient cars. Vehicles made of stronger and lighter materials are safer for drivers, emit less CO2 and consume less fuel - and more malleable steels will allow manufacturers to form car parts into desirable, streamlined shapes.

“Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. Lightweight steels are one of the candidates to address these concerns. Most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. The paper studies the kinetics and thermodynamics of microstructural evolution of lightweight steels through simulations and experiments and proposes a mechanism to achieve higher strength and larger ductility; a method that can be readily adopted by industry,” commented Dr. Rahnama.

The research, ‘Effect of Ni alloying on the microstructural evolution and mechanical properties of two duplex light-weight steels during different annealing temperatures: experiment and phase-field simulation’, is published in Acta Materialia. It is co-authored by Dr Hiren Kotadia and Professor Sridhar Seetharaman. The project is funded by the WMG centre High Value Manufacturing (HVM) Catapult.


Subscribe to International Sheet Metal Review to receive 10 magazines per year, packed with the very latest industry news and product reviews.


1 Forum Place, Winchester Court, Hatfield, Hertfordshire, AL10 0RN, United Kingdom
Tel: +44 (0)1707 273999 • Fax: +44 (0)1707 276555 • E-mail:
Privacy Policy